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Abstract – A generalization of one Pinsker’s problem on estimation of mutual in-
formation via variation is considered. We obtain some upper and lower bounds for
the maximum of the absolute value of the difference between the mutual information
of several random variables via variational distance between the probability distribu-
tions of these random variables. In some cases, these bounds are optimal.

1 Introduction

In [1], Pinsker considered the following problem. Let X and Y be two discrete random
variables with a joint distribution PXY and marginal distributions PX and PY , respectively.
The problem is to upper estimate the maximum of the mutual information I(X;Y ) under the
condition that the distribution PX is given and the variational distance V (PXY , PX × PY )
between the joint distribution PXY and the product of marginal distributions PX and PY

does not exceed a fixed τ ≥ 0. In [1], an upper bound for this maximum in terms of PX and
τ was obtained, which in most cases is better than the Csiszár –Körner estimate [2,3]

I(X;Y ) ≤ τ ln
N

τ
,

where N is cardinality of range of the random variable X. Note that a lower estimate (known
as Pinsker’s inequality)

I(X;Y ) ≥ 1

2
τ2

was obtained earlier [2,4]. A lower estimate (which is optimal or asymptotically optimal in
some special cases) for the maximum of I(X;Y ) in terms of PX and τ was obtained in [5].

The Pinsker problem admits generalizations in several directions (see, e.g., [6-8]). Here
we consider the most general problem of estimating the maximum of the absolute value of
the difference |I(X1; ...;Xn;Y )− I(X ′

1; ...;X
′
n;Y

′)| via the variational distance
V (PX1...XnY , PX′

1...X
′
nY

′) and the distribution PX1...Xn of the random variablesX1, ..., Xn (here
I(U1; ...;Un) denotes the mutual information of the random variables U1, ..., Un (see [2] and
Section 2)). This problem is reduced to the Pinsker problem above in the special case n = 1
and under the additional assumptions that PX′ = PX , PY ′ = PY , and X ′ and Y ′ are
independent.

∗This work was carried out with the partial support of the Russian Foundation for Basic Research (project
no. 09-01-00536) .
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2 Main definitions and results

Let X1, ..., Xn be discrete random variables ranging in finite sets Ii = {1, 2, ..., Ni}, i =
1, ..., n, respectively, such that |Ii| = Ni, where Ni are given integers and |I| denotes the
cardinality of a set I. Denote by

I(X1; ...;Xn) = D (PX1...Xn ||PX1 × · × PXn)

the information divergence which is usually called the mutual information of X1, ..., Xn (see,
e.g., [2]). In the special case n = 2, the quantity I(X1; ...;Xn) coincides with the standard
mutual information I(X1;X2) of two random variables. In what follows, we denote vectors
by boldfaceletters, e.g., X = (X1, ..., Xn), N = (N1, ..., Nn), etc.

Given a random vector X and a positive τ , define

Jτ (X) = sup
X′,Y,Y ′

|I(X1; . . . ;Xn;Y )− I(X ′
1; . . . ;X

′
n;Y

′)|,

where the supremum is over all random variables X′ = (X ′
1, . . . , X

′
n), Y , and Y ′ such that

V (PXY , PX′Y ′) = V (PX1...XnY , PX′
1...X

′
nY

′) ≤ τ.

Here we assume that the random variables Xk and X ′
k take values in the set Ik, |Ik| =

Nk, k = 1, . . . , n, and the random variables Y and Y ′ range in a finite or countable set J .
Denote also

J (N)
τ = sup

X
Jτ (X),

where N = (N1, . . . , Nn), and the supremum is over all random vectors X = (X1, . . . , Xn)
whose components Xi take values in Ii, |Ii| = Ni, i = 1, . . . , n. Finally, define the quantities

τ0X =
{
inf τ : Jτ (X) = max

ν
Jν(X)

= max

{
n∑

i=1

H(Xi), lnN − I(X1; ...;Xn)

}}

and
τ0 = τ0(N) =

{
inf τ : J (N)

τ = lnN
}
,

where N =
n∏

k=1

Nk.

We obtain some upper and lower bounds for Jτ (X), J
(N)
τ , τ0X, and τ0 which are contained

in the theorems formulated below. In some special cases, these upper and lower bounds
coincide or are rather close.

To state our main results, we introduce the following definitions. For any ordered collec-

tion of L ≥ 1 nonnegative numbers ξ = {ξi} such that 1 ≥ ξ1 ≥ ξ2 ≥ . . . ≥ ξL ≥ 0,
L∑
i=1

ξi ≤ 1,

and for some integers K ≥ 1 and m ≥ 1, put

λ(ξ,K) =


2

[
1− t

K
−A(ξ,K)

]
if

L∑
k=1

1

ξk
≥ K

2

[
1− L

K

]
if

L∑
k=1

1

ξk
< K,
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where

A(ξ,K) = ξt+1

(
1− 1

K

t∑
k=1

1

ξk

)
and the integer t is defined by the conditions

t∑
k=1

1

ξk
≤ K,

t+1∑
k=1

1

ξk
> K,

and

µ(ξ,m) =


2

[
1−

s∑
k=1

ξk −B(ξ,m)

]
if

L∑
k=1

m
√
ξk ≥ 1

2

[
1−

L∑
k=1

ξk

]
if

L∑
k=1

m
√
ξk < 1,

where

B(ξ,m) =

(
1−

s∑
k=1

m
√

ξk

)m

and s is an integer satisfying inequalities

s∑
k=1

m
√

ξk ≤ 1,

s+1∑
k=1

m
√

ξk > 1.

In what follows, we always assume that the components p(i) = Pr{X = i} of the proba-

bility distribution p = {p(i), i ∈ I =
n∏

k=1

Ik} of the random vector X and the numbers Nk =

|Ik|, k = 1, . . . , n, are ordered in such a way that pmax = p(i1) ≥ p(i2) ≥ . . . ≥ p(iN ) = pmin,

where N =
n∏

k=1

Nk, and N1 ≥ N2 ≥ . . . ≥ Nn.

An ordered collection of probabilities p̂ = {p(j1) ≥ p(j2) ≥ . . . ≥ p(jNn)} of several
components of the probability distribution p = {p(i)} is called admissible if every column of
the matrix ||jkl||, k = 1, . . . , Nn, l = 1, . . . , n, constructed from components of the vectors
jk = (jk1, . . . , jkn), k = 1, . . . , Nn, consists of different elements of the corresponding sets
Il, l = 1, . . . , n.

Theorem 1: The following statements are valid:

• If lnN − I(X1; . . . ;Xn) >
n∑

k=1

H(Xk), then

λ(p,N1) ≤ τ0X ≤ λ(p,N) (1)

and
τ0X ≤ λ(p̂, N1). (2)

• If lnN − I(X1; . . . ;Xn) <
n∑

k=1

H(Xk), then

µ(p, 2) ≤ τ0X ≤ 2(1− pmax) (3)

and
τ0X ≤ µ(p̂, n+ 1). (4)

In the upper estimates (2) and (4), p̂ = {p(jk), k = 1, . . . , Nn} denotes any admissible
collection of components of the probability distribution of the random vector X.
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Remark 1: If n = 1 and H(X) < lnN , then the upper and lower estimates in (1)
coincide and we have τ0X = λ(p,N). If H(X) = lnN , i.e., if X is uniformly distributed, then
it is easy to show that τ0X = µ(p, 2).

Example : Let all components of a random vector X = (X1, . . . , Xn) be the same with
probability 1, i.e., Xi = X1, i = 2, . . . , n. It is easy to see that τ0X = λ(p,N1) if H(X1) <
n lnN1

2n− 1
. Indeed, this fact immediately follows from estimates (1) and (2) since we can put

p̂ = p. On the other hand, if H(X1) >
n lnN1

2n− 1
, then one can show that τ0X = µ(p, n+ 1).

Theorem 2: The following estimates for τ0 = τ0(N) are valid:

τ0 ≥ 2

[
1− ⌊

√
N1⌋
N1

−
(
1− ⌊

√
N1⌋√
N1

)2
]

(5)

and

τ0 ≤



2

[
1− ⌊ n+1

√
N1⌋

N1
− α(N1)

]
if Nn > n+1

√
N1,

2

[
1− Nn

N1
− β(N1, Nn)

]
if Nn ≤ n+1

√
N1 and

(
n+1
√
N1 −Nn

)ν
<

1

Nn
,

2

[
1− Nn

N1
− 1

N1Nn

]
if Nn ≤ n+1

√
N1 and

(
n+1
√
N1 −Nn

)ν ≥ 1

Nn
,

(6)

where

α(N1) =

(
1− ⌊ n+1

√
N1⌋

n+1
√
N1

)n+1

, β(N1, Nn) =

(
n+1
√
N1 −Nn

)ν
N1

and an integer ν ≥ 2 is defined by the relations Nν−1 > Nν = Nn.
Remark 2: Note that for n = 1, the upper and lower estimates (5) and (6) coincide. We

conjecture that the upper estimate (6) is tight for any n ≥ 2, i.e., it gives an exact expression
for τ0 if Nn > n+1

√
N1.

In the definitions of Jτ (X) and JN
τ , besides the main condition V (PXY , PX′Y ′) ≤ τ , it

is sometimes introduced some additional conditions. In particular, if we additionally as-
sume that X′ ∼ X (the notation U ′ ∼ U means that PU ′ = PU ) or X′ ∼ X and Y ′ ∼ Y
simultaneously, then it is easy to see that

max
τ

Jτ (X) =
n∑

k=1

H(Xk)− I(X1; . . . ;Xn).

On the other hand, if we assume that only Y ′ ∼ Y , then

max
τ

Jτ (X) = max

{
n∑

k=1

H(Xk), lnN − I(X1; . . . ;Xn)

}
.

In the next theorem, we give explicit expressions for τ0X and τ0 under the additional conditions
on X′, Y , and Y ′ given above.

Theorem 3: The following statements are valid:

• Let X ∼ X′. Then

τ0X = 2(1− pmax) and τ0 = 2

(
1− 1

N

)
; (7)
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• Let X ∼ X′ and Y ∼ Y ′. Then

τ0X = 2

(
1−

∑
i∈I

p2(i)

)
and τ0 = 2

(
1− 1

N

)
; (8)

• Let Y ∼ Y ′. Then

τ0 = 2

(
1− 1

N1

)
. (9)

Moreover, if
n∑

k=1

H(Xk) > lnN − I(X1; . . . ;Xn), then

τ0X = 2 (1− pmax) , (10)

and if
n∑

k=1

H(Xk) < lnN − I(X1; . . . ;Xn), then

τ0X ≥ 2

(
1− 1

N1

N1∑
k=1

p(ik)

)
, (11)

and

τ0X ≤ min

{
2

(
1− 1

Nn

Nn∑
k=1

p(jk)

)
, 2

(
1− 1

N

N∑
k=1

p(ik)

)}
, (12)

where {p(jk), k = 1, . . . , Nn} is any admissible collection of components of the proba-
bility distribution p.

In the next two theorems, some upper and lower bounds for Jτ (X) and JN
τ are given.

Theorem 4: The quantity Jτ (X) satisfies the following inequality:

Jτ (X) ≥ τ̂

2
ln(N − 1) + h

(
τ̂

2

)
, 0 ≤ τ < 2

(
1− 1

N

)
, (13)

where

τ̂ = τ̂(X) =


τ if pmin ≥ τ

2(N − 1)
,

2(N − 1)pmin if pmin <
τ

2(N − 1)
,

(14)

and h(x) = −x lnx − (1 − x) ln(1 − x) is the binary entropy function. Moreover, for all
τ, γ ≤ τ ≤ τ∗, we also have

Jτ (X) ≥
n∑

k=1

H(Xk)−
τ∗ − τ

τ∗ − γ
H(X), (15)

where
γ = γ(X) = V (PX1...Xn , PX1 × . . .× PXn),

τ∗ = τ∗(X) = 2
(
1−

∑
i=(i1...in)

p(i)p
(1)(i1) . . . p

(n)(in)
)

and
p(i) = Pr{X = i} = Pr{X1 = i1, . . . , Xn = in},

p(k)(ik) = Pr{Xk = ik}, ik ∈ Ik, k = 1, . . . , n.

Theorem 5: The quantity J
(N)
τ , 0 ≤ τ < τ0 satisfies the following inequalities:
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•

J (N)
τ ≥ τ

2
ln

[
n∏

k=1

(Nk − 1)

]
+ nh

(τ
2

)
(16)

and

J (N)
τ ≤ τ

2
ln

[
N

n∏
k=1

(Nk − 1)

]
+ (n+ 1)h

(τ
2

)
; (17)

• If X ∼ X′, then we have

τ

2
ln(N − 1) + h

(τ
2

)
≤ J (N)

τ ≤ τ

2
lnN + h

(τ
2

)
; (18)

• If X ∼ X′ and Y ∼ Y ′, then

J (N)
τ =

τ

2
ln(N − 1) + h

(τ
2

)
; (19)

• If Y ∼ Y ′, then

J (N)
τ ≥ τ

2
ln

[
n∏

k=1

(Nk − 1)

]
+ nh

(τ
2

)
(20)

and

J (N)
τ ≤ τ

2
ln

[
(N − 1)

n∏
k=1

(Nk − 1)

]
+ (n+ 1)h

(τ
2

)
. (21)

The proofs of theorems formulated above can be found in [9].
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